Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings
نویسندگان
چکیده
منابع مشابه
Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings
In this paper we study the lower semicontinuous envelope with respect to the L-topology of a class of isotropic functionals with linear growth defined on mappings from the n-dimensional ball into RN that are constrained to take values into a smooth submanifold Y of RN . Let B be the unit ball in R and Y a smooth Riemannian manifold of dimension M ≥ 1, isometrically embedded in R for some N ≥ 2....
متن کاملEnergy functionals for manifold-valued mappings and their properties
This technical report is merely an extended version of the appendix of [8] with complete proofs, which had to be omitted due to space restrictions.This technical report requires a basic knowledge of differential geometry. However, apart from that requirement the technical report is self-contained. 1 Overview In Section 2 we start with a review of material contained in [1] about the pull-back co...
متن کاملOn Invertibility of Sobolev Mappings
We prove local and global invertibility of Sobolev solutions of certain differential inclusions which prevent the differential matrix from having negative eigenvalues. Our results are new even for quasiregular mappings in two dimensions.
متن کاملRelaxation and Integral Representation for Functionals of Linear Growth on Metric Measure Spaces
This article studies an integral representation of functionals of linear growth on metric measure spaces with a doubling measure and a Poincaré inequality. Such a functional is defined through relaxation, and it defines a Radon measure on the space. For the singular part of the functional, we get the expected integral representation with respect to the variation measure. A new feature is that i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations
سال: 2008
ISSN: 1292-8119,1262-3377
DOI: 10.1051/cocv:2008026